Solve the following integration:
\[\int\frac{x+cosx}{3x^{2}+6sinx}dx\]
- August 11, 2023
- Posted by: Nirgaman
- Category: Mathematics
No Comments
\(\int\frac{x+cosx}{3x^{2}+6sinx}\)\(dx\)
Let, \(3x^{2}+6sinx\) \(= t\)
Differentiating w.r.t \(x\)
\(6x+6cosx\) \(dx\) \(=dt\)
\(6(x+cosx)\) \(dx\) \(=dt\)
\((x+cosx)\)\(dx\)\(=\)\(\int\frac{1}{6}\)\(dt\)
\(\int\frac{x+cosx}{3x^{2}+6sinx}\)\(=\)\(\int\frac{1}{6}\)\(\frac{dt}{t}\)
\(=\)\(\frac{1}{6}\)\(\int\frac{dt}{t}\)
\(=\)\(\frac{1}{6}\)\(\log|t|+C\)
Putting the value of \(t\) = \(3x^{2}+6sinx\)
\(=\)\(\frac{1}{6}\)\(\log|3x^{2}+6sinx|+C\)