Question: Find \(\frac{dy}{dx}\) from the implicit function, \(x^{3}+y^{3}-1=0\)
- August 13, 2023
- Posted by: Nirgaman
- Category: Grade-12 Derivatives Mathematics
No Comments
Solution:-
\(x^{3}+y^{3}-1=0\)
\(x^{3}+y^{3}=1\)
now, \(\frac{d}{dx}(x^{3}+y^{3})=\frac{d}{dx}(1)\)
\(\frac{d}{dx}(x^{3})\)+ \(\frac{d}{dx}(y^{3})= 0\)
\(3x^{2}+3y^{2} \frac{d}{dx}=0\)
\(3y^{2}\frac{d}{dx}= – 3x^{2}\)
\(\frac{d}{dx}\)\(=\)\(-\)\(\frac{x^{2}}{y^{2}}\)