Question:- Compute \(L\)\(({t^{2}e^{2t}+2\sin(t)\cos(t)+3})\). Show your steps.
- August 18, 2023
- Posted by: Nirgaman
- Category: Engineering Mathematics Mathematics
Solution:- \(L\)\(({t^{2}e^{2t}+2\sin(t)\cos(t)+3})\)
\(=\)\(L(t^{2}e^{2t})\) +\(L\)\((2\sin(t)\cos(t))\) +\(L(3)\) ——————————-(\(1)\)
\(L(t^{2}e^{2t})\)\(=L(t^{2})\).\(L(e^{2t})\)
\(=\frac{2}{s^3}.\frac{1}{S-2}\), ——————————————————–(\(a\))
Since, \(L({t^n})\) \(=\) \(\frac{n!}{S^{n+1}}\)
\(\Rightarrow\)\(L(t^{2})\)\(=\) \(\frac{2}{S^{2+1}}\)
\(=\) \(\frac{2}{S^{3}}\)
Since, \(L(e^{at})\)\(=\)\(\frac{1}{(S-a)}\)\(=\)\(\frac{1}{S-2}\)
Now, \(L({2\sin(t)\cos(t)})\) Which can be written as
\(=L({\sin2(t)})\)
\(L(\sin2t)\)\(=\)\(\frac{2}{S^{2}+2^{2}}\)
\(=\)\(\frac{2}{(S^{2}+4)}\) ———————————————————–(\(b\))
Since, Laplace transformation of \(L\)\((\sin\)\(at\)) \(=\)\(\frac{a}{S^{2}+a^{2}}\)
now, \(L(3)\)\(=\frac{3}{S}\) ———————————————————-(\(c\))
Since, \(L(1)\)\(=\frac{1}{S}\)
Now putting the values of (\(a)\),
Now putting the values of (\(a)\),
Now putting the values of (\(a)\), (\(b)\) and (\(c)\) in equation