A charged particle having drift velocity of \(7.5 \times10^{-4}ms^{-1}\) in an electric field of \(3\times10^{-10}Vm^{-1}\) has a mobility (in \(m^2V^{-1}s^{-1}\)) of
11
Aug
A charged particle having drift velocity of \(7.5 \times10^{-4}ms^{-1}\) in an electric field of \(3\times10^{-10}Vm^{-1}\) has a mobility (in \(m^2V^{-1}s^{-1}\)) of
Solve the following integration:
\[\int\frac{x+cosx}{3x^{2}+6sinx}dx\]
\[\int\frac{x+cosx}{3x^{2}+6sinx}dx\]
11
Aug
(intfrac{x+cosx}{3x^{2}+6sinx})(dx) Let, (3x^{2}+6sinx) (= t) Differentiating w.r.t (x) (6x+6cosx) (dx) (=dt) (6(x+cosx)) (dx) (=dt) ((x+cosx))(dx)(=)(intfrac{1}{6})(dt) (intfrac{x+cosx}{3x^{2}+6sinx})(=)(intfrac{1}{6})(frac{dt}{t}) (=)(frac{1}{6})(intfrac{dt}{t}) (=)(frac{1}{6})(log|t|+C) Putting the value of (t) = (3x^{2}+6sinx) (=)(frac{1}{6})(log|3x^{2}+6sinx|+C)
The angle of 1 (minute of arc) in radian is nearly
10
Aug
Explanation:-
\(1\) \(minute =\) \(\frac{1}{60}\) \(degree\)